image_id
int32
1
13
image
image
class_segmentation
image
object_segmentation
image
shapes
large_string
1
"[{'type': 'points', 'label': 'plant_center', 'points': (111.69, 227.25)}, {'type': 'points', 'label': 'plant_center', 'points': (77.59, 128.12)}, {'type': 'points', 'label': 'plant_center', 'points': (55.23, 31.58)}, {'type': 'polygon', 'label': 'greenery', 'points': [(149.07, 0.0), (149.68, 1.23), (138.1, 20.78), (135.92, 24.4), (126.51, 33.82), (125.06, 35.99), (122.16, 37.44), (124.34, 41.06), (127.23, 35.99), (130.85, 33.82), (137.37, 31.64), (143.16, 33.09), (146.06, 38.16), (147.51, 44.68)..."
2
"[{'type': 'polygon', 'label': 'First', 'points': [(364.9, 136.5), (369.0, 121.0), (360.0, 115.0), (340.0, 110.0), (338.7, 101.6), (332.2, 100.7), (328.0, 110.0), (324.0, 111.0), (320.0, 107.0), (308.3, 103.5), (304.0, 110.0), (292.0, 103.2), (286.0, 112.0), (282.0, 120.0), (266.9, 123.9), (279.0, 142.0), (279.0, 147.0), (296.5, 154.5), (313.3, 155.2), (330.0, 164.0), (342.0, 162.0), (346.0, 155.0), (356.72, 156.09), (362.53, 150.47)]}, {'type': 'polygon', 'label': 'First', 'points': [(453.93, 32..."
3
"[{'type': 'polygon', 'label': 'First', 'points': [(933.0, 485.0), (928.0, 485.0), (917.0, 491.0), (911.0, 499.0), (911.0, 505.0), (918.0, 517.0), (930.0, 523.0), (939.0, 521.0), (949.0, 505.0), (947.0, 493.0)]}, {'type': 'polygon', 'label': 'First', 'points': [(814.0, 427.0), (798.0, 433.0), (796.0, 437.0), (796.0, 452.0), (799.0, 458.0), (809.0, 467.0), (818.0, 468.0), (824.0, 465.0), (835.0, 450.0), (835.0, 443.0), (824.0, 429.0)]}, {'type': 'polygon', 'label': 'First', 'points': [(810.0, 485...."
4
"[{'type': 'polygon', 'label': 'First', 'points': [(1514.0, 0.0), (1507.0, 16.0), (1508.0, 61.0), (1513.0, 88.0), (1521.0, 100.0), (1526.0, 120.0), (1526.0, 136.0), (1529.0, 146.0), (1540.0, 150.0), (1558.0, 150.0), (1580.0, 164.0), (1601.0, 166.0), (1619.0, 160.0), (1633.0, 149.0), (1638.0, 148.0), (1646.0, 139.0), (1646.0, 113.0), (1654.0, 86.0), (1653.0, 76.0), (1655.0, 63.0), (1653.0, 55.0), (1655.0, 44.0), (1667.0, 28.0), (1667.0, 20.0), (1670.0, 16.0), (1668.0, 15.0), (1659.0, 19.0), (1644...."
5
"[{'type': 'polygon', 'label': 'First', 'points': [(1999.0, 63.0), (1987.0, 68.0), (1970.0, 69.0), (1969.0, 76.0), (1978.0, 85.0), (1999.0, 87.0)]}, {'type': 'polygon', 'label': 'First', 'points': [(1969.0, 0.0), (1973.0, 20.0), (1969.0, 28.0), (1975.0, 36.0), (1982.0, 40.0), (1991.0, 41.0), (1999.0, 45.0), (1999.0, 0.0)]}, {'type': 'polygon', 'label': 'First', 'points': [(0.0, 446.9), (0.0, 694.0), (15.0, 695.0), (18.0, 698.0), (20.0, 709.0), (24.0, 716.0), (23.0, 723.0), (11.0, 735.0), (1.0, 73..."
6
"[{'type': 'polygon', 'label': 'greenery', 'points': [(493.8, 76.32), (495.72, 76.2), (498.12, 75.96), (501.48, 75.24), (503.88, 74.76), (506.76, 76.08), (509.64, 77.76), (510.12, 81.6), (509.64, 84.84), (509.04, 87.24), (514.2, 87.84), (516.36, 90.84), (519.48, 93.72), (521.04, 96.84), (521.88, 99.36), (520.68, 102.96), (516.84, 106.2), (512.28, 106.8), (508.56, 106.8), (506.28, 109.56), (503.04, 114.0), (499.08, 116.28), (495.72, 116.4), (491.64, 116.4), (487.44, 111.36), (487.44, 108.24), (490..."
7
"[{'type': 'polygon', 'label': 'First', 'points': [(131.0, 304.0), (125.0, 312.0), (127.0, 320.0), (136.0, 332.0), (143.0, 332.0), (147.0, 328.0), (150.0, 319.0), (157.0, 319.0), (158.0, 313.0), (156.0, 308.0), (148.0, 300.0), (138.82, 293.87), (135.22, 301.3)]}, {'type': 'polygon', 'label': 'First', 'points': [(26.0, 253.0), (16.0, 257.0), (11.0, 262.0), (13.0, 272.0), (21.0, 275.0), (27.0, 274.0), (31.0, 256.0)]}, {'type': 'polygon', 'label': 'First', 'points': [(45.0, 291.0), (40.0, 296.0), (4..."
8
"[{'type': 'polygon', 'label': 'First', 'points': [(680.0, 0.0), (679.0, 10.0), (681.0, 13.0), (693.0, 17.0), (717.0, 17.0), (722.0, 22.0), (731.0, 21.0), (735.0, 24.0), (740.0, 37.0), (744.0, 40.0), (744.0, 44.0), (733.0, 59.0), (732.0, 70.0), (748.0, 104.0), (760.0, 116.0), (760.0, 122.0), (755.0, 132.0), (757.0, 137.0), (750.0, 144.0), (744.0, 156.0), (744.0, 170.0), (747.0, 176.0), (758.0, 186.0), (764.0, 189.0), (777.0, 188.0), (789.0, 204.0), (780.0, 220.0), (776.0, 238.0), (783.0, 248.0), ..."
9
"[{'type': 'polygon', 'label': 'greenery', 'points': [(0.0, 313.46), (3.1, 313.6), (7.4, 312.4), (15.3, 311.3), (19.1, 309.0), (23.0, 303.9), (24.5, 299.5), (23.3, 292.1), (21.2, 287.9), (19.2, 285.8), (19.0, 281.1), (16.8, 275.2), (13.2, 273.8), (7.9, 272.6), (2.2, 271.8), (0.0, 272.36)]}, {'type': 'polygon', 'label': 'greenery', 'points': [(0.0, 194.35), (2.84, 196.3), (10.72, 200.04), (16.52, 199.0), (20.46, 202.11), (29.38, 204.6), (35.6, 203.15), (38.92, 197.96), (38.92, 192.16), (38.92, 185..."
10
"[{'type': 'polygon', 'label': 'First', 'points': [(0.0, 456.0), (7.0, 452.0), (19.0, 452.0), (35.0, 447.0), (41.0, 447.0), (47.0, 452.0), (64.0, 449.0), (74.0, 453.0), (83.0, 450.0), (88.0, 452.0), (112.0, 453.0), (131.0, 450.0), (192.0, 451.0), (200.0, 445.0), (214.0, 449.0), (229.0, 443.0), (237.0, 450.0), (258.0, 449.0), (266.0, 451.0), (277.0, 445.0), (285.0, 447.0), (298.0, 447.0), (303.0, 445.0), (317.0, 450.0), (323.0, 447.0), (338.0, 447.0), (342.0, 445.0), (357.0, 450.0), (371.0, 447.0)..."
11
"[{'type': 'polygon', 'label': 'First', 'points': [(96.0, 779.0), (72.0, 774.0), (58.0, 763.0), (48.0, 767.0), (28.0, 764.0), (14.0, 770.0), (9.0, 768.0), (1.0, 769.0), (0.0, 944.0), (4.0, 941.0), (20.0, 937.0), (24.0, 933.0), (28.0, 925.0), (28.0, 920.0), (24.0, 913.0), (26.0, 907.0), (59.0, 902.0), (82.0, 891.0), (96.0, 891.0), (108.0, 873.0), (109.0, 859.0), (116.0, 850.0), (120.0, 840.0), (116.0, 833.0), (116.0, 825.0), (108.0, 819.0), (107.0, 813.0), (114.0, 796.0)]}, {'type': 'polygon', 'la..."
12
"[{'type': 'polygon', 'label': 'First', 'points': [(434.0, 1190.0), (428.0, 1198.0), (425.0, 1207.0), (418.0, 1215.0), (419.0, 1233.0), (428.0, 1248.0), (433.0, 1250.0), (446.0, 1250.0), (457.0, 1257.0), (466.0, 1275.0), (473.0, 1279.0), (489.0, 1282.0), (494.0, 1287.0), (495.0, 1293.0), (513.0, 1309.0), (537.0, 1314.0), (545.0, 1311.0), (554.0, 1303.0), (562.0, 1290.0), (565.0, 1278.0), (554.0, 1268.0), (551.0, 1252.0), (535.0, 1247.0), (535.0, 1243.0), (525.0, 1225.0), (506.0, 1214.0), (482.0, ..."
13
"[{'type': 'polygon', 'label': 'First', 'points': [(124.0, 695.0), (110.0, 675.0), (89.0, 657.0), (83.0, 662.0), (82.0, 672.0), (84.0, 675.0), (82.0, 677.0), (66.0, 679.0), (55.0, 677.0), (48.0, 682.0), (36.0, 680.0), (30.0, 685.0), (3.0, 690.0), (0.0, 693.0), (0.0, 732.0), (10.0, 727.0), (25.0, 724.0), (45.0, 724.0), (52.0, 721.0), (56.0, 716.0), (67.0, 722.0), (76.0, 723.0), (80.0, 721.0), (80.0, 710.0), (84.0, 711.0), (86.0, 716.0), (100.0, 730.0), (106.0, 732.0), (111.0, 725.0), (113.0, 710.0..."

Plantations Segmentation

The images consist of aerial photography of agricultural plantations with crops such as cabbage and zucchini. The dataset addresses agricultural tasks such as plant detection and counting, health assessment, and irrigation planning. The dataset consists of plantations' photographs with object and class segmentation of cabbage.

Get the dataset

This is just an example of the data

Leave a request on https://trainingdata.pro/data-market to discuss your requirements, learn about the price and buy the dataset.

Dataset structure

  • Plantations_Segmentation - contains of original plantation images (folder img) and file with annotations (.xml)
  • Object_Segmentation - includes object segmentation masks for the original images
  • Class_Segmentation - includes class segmentation masks for the original images

Types of segmentation

The dataset includes two types of segmentation:

  • Class Segmentation - objects corresponding to one class are identified
  • Object Segmentation - all objects are identified separately

Data Format

Each image from img folder is accompanied by an XML-annotation in the annotations.xml file indicating the coordinates of the polygons. For each point, the x and y coordinates are provided.

Example of XML file structure

Plantation segmentation might be made in accordance with your requirements.

**TrainingData**

More datasets in TrainingData's Kaggle account: https://www.kaggle.com/trainingdatapro/datasets

TrainingData's GitHub: https://github.com/Trainingdata-datamarket/TrainingData_All_datasets

Downloads last month
2
Edit dataset card
Evaluate models HF Leaderboard