Repository Cards
The huggingface_hub library provides a Python interface to create, share, and update Model/Dataset Cards. Visit the dedicated documentation page for a deeper view of what Model Cards on the Hub are, and how they work under the hood. You can also check out our Model Cards guide to get a feel for how you would use these utilities in your own projects.
Repo Card
The RepoCard
object is the parent class of ModelCard, DatasetCard and SpaceCard
.
__init__
< source >( content: str ignore_metadata_errors: bool = False )
Initialize a RepoCard from string content. The content should be a Markdown file with a YAML block at the beginning and a Markdown body.
Example:
>>> from huggingface_hub.repocard import RepoCard
>>> text = '''
... ---
... language: en
... license: mit
... ---
...
... # My repo
... '''
>>> card = RepoCard(text)
>>> card.data.to_dict()
{'language': 'en', 'license': 'mit'}
>>> card.text
'\n# My repo\n'
ValueError
when the content of the repo card metadata is not a dictionary.
from_template
< source >( card_data: CardData template_path: typing.Optional[str] = None **template_kwargs ) → huggingface_hub.repocard.RepoCard
Parameters
-
card_data (
huggingface_hub.CardData
) — A huggingface_hub.CardData instance containing the metadata you want to include in the YAML header of the repo card on the Model Database Hub. -
template_path (
str
, optional) — A path to a markdown file with optional Jinja template variables that can be filled in withtemplate_kwargs
. Defaults to the default template.
A RepoCard instance with the specified card data and content from the template.
Initialize a RepoCard from a template. By default, it uses the default template.
Templates are Jinja2 templates that can be customized by passing keyword arguments.
load
< source >( repo_id_or_path: typing.Union[str, pathlib.Path] repo_type: typing.Optional[str] = None token: typing.Optional[str] = None ignore_metadata_errors: bool = False ) → huggingface_hub.repocard.RepoCard
Parameters
-
repo_id_or_path (
Union[str, Path]
) — The repo ID associated with a Model Database Hub repo or a local filepath. -
repo_type (
str
, optional) — The type of Model Database repo to push to. Defaults to None, which will use use “model”. Other options are “dataset” and “space”. Not used when loading from a local filepath. If this is called from a child class, the default value will be the child class’srepo_type
. -
token (
str
, optional) — Authentication token, obtained withhuggingface_hub.HfApi.login
method. Will default to the stored token. -
ignore_metadata_errors (
str
) — If True, errors while parsing the metadata section will be ignored. Some information might be lost during the process. Use it at your own risk.
The RepoCard (or subclass) initialized from the repo’s README.md file or filepath.
Initialize a RepoCard from a Model Database Hub repo’s README.md or a local filepath.
push_to_hub
< source >(
repo_id: str
token: typing.Optional[str] = None
repo_type: typing.Optional[str] = None
commit_message: typing.Optional[str] = None
commit_description: typing.Optional[str] = None
revision: typing.Optional[str] = None
create_pr: typing.Optional[bool] = None
parent_commit: typing.Optional[str] = None
)
→
str
Parameters
-
repo_id (
str
) — The repo ID of the Model Database Hub repo to push to. Example: “nateraw/food”. -
token (
str
, optional) — Authentication token, obtained withhuggingface_hub.HfApi.login
method. Will default to the stored token. -
repo_type (
str
, optional, defaults to “model”) — The type of Model Database repo to push to. Options are “model”, “dataset”, and “space”. If this function is called by a child class, it will default to the child class’srepo_type
. -
commit_message (
str
, optional) — The summary / title / first line of the generated commit. -
commit_description (
str
, optional) — The description of the generated commit. -
revision (
str
, optional) — The git revision to commit from. Defaults to the head of the"main"
branch. -
create_pr (
bool
, optional) — Whether or not to create a Pull Request with this commit. Defaults toFalse
. -
parent_commit (
str
, optional) — The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. If specified andcreate_pr
isFalse
, the commit will fail ifrevision
does not point toparent_commit
. If specified andcreate_pr
isTrue
, the pull request will be created fromparent_commit
. Specifyingparent_commit
ensures the repo has not changed before committing the changes, and can be especially useful if the repo is updated / committed to concurrently.
Returns
str
URL of the commit which updated the card metadata.
Push a RepoCard to a Model Database Hub repo.
save
< source >( filepath: typing.Union[pathlib.Path, str] )
Save a RepoCard to a file.
validate
< source >( repo_type: typing.Optional[str] = None )
Validates card against Model Database Hub’s card validation logic. Using this function requires access to the internet, so it is only called internally by huggingface_hub.repocard.RepoCard.push_to_hub().
ValueError
if the card fails validation checks.HTTPError
if the request to the Hub API fails for any other reason.
Card Data
The CardData object is the parent class of ModelCardData and DatasetCardData.
Structure containing metadata from a RepoCard.
CardData is the parent class of ModelCardData and DatasetCardData.
Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data
(example: flatten evaluation results). CardData
behaves as a dictionary (can get, pop, set values) but do not
inherit from dict
to allow this export step.
Get value for a given metadata key.
Pop value for a given metadata key.
to_dict
< source >(
)
→
dict
Returns
dict
CardData represented as a dictionary ready to be dumped to a YAML block for inclusion in a README.md file.
Converts CardData to a dict.
to_yaml
< source >(
line_break = None
)
→
str
Dumps CardData to a YAML block for inclusion in a README.md file.
Model Cards
ModelCard
from_template
< source >( card_data: ModelCardData template_path: typing.Optional[str] = None **template_kwargs ) → huggingface_hub.ModelCard
Parameters
-
card_data (
huggingface_hub.ModelCardData
) — A huggingface_hub.ModelCardData instance containing the metadata you want to include in the YAML header of the model card on the Model Database Hub. -
template_path (
str
, optional) — A path to a markdown file with optional Jinja template variables that can be filled in withtemplate_kwargs
. Defaults to the default template.
Returns
A ModelCard instance with the specified card data and content from the template.
Initialize a ModelCard from a template. By default, it uses the default template, which can be found here: https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md
Templates are Jinja2 templates that can be customized by passing keyword arguments.
Example:
>>> from huggingface_hub import ModelCard, ModelCardData, EvalResult
>>> # Using the Default Template
>>> card_data = ModelCardData(
... language='en',
... license='mit',
... library_name='timm',
... tags=['image-classification', 'resnet'],
... datasets=['beans'],
... metrics=['accuracy'],
... )
>>> card = ModelCard.from_template(
... card_data,
... model_description='This model does x + y...'
... )
>>> # Including Evaluation Results
>>> card_data = ModelCardData(
... language='en',
... tags=['image-classification', 'resnet'],
... eval_results=[
... EvalResult(
... task_type='image-classification',
... dataset_type='beans',
... dataset_name='Beans',
... metric_type='accuracy',
... metric_value=0.9,
... ),
... ],
... model_name='my-cool-model',
... )
>>> card = ModelCard.from_template(card_data)
>>> # Using a Custom Template
>>> card_data = ModelCardData(
... language='en',
... tags=['image-classification', 'resnet']
... )
>>> card = ModelCard.from_template(
... card_data=card_data,
... template_path='./src/huggingface_hub/templates/modelcard_template.md',
... custom_template_var='custom value', # will be replaced in template if it exists
... )
ModelCardData
class huggingface_hub.ModelCardData
< source >( language: typing.Union[typing.List[str], str, NoneType] = None license: typing.Optional[str] = None library_name: typing.Optional[str] = None tags: typing.Optional[typing.List[str]] = None datasets: typing.Optional[typing.List[str]] = None metrics: typing.Optional[typing.List[str]] = None eval_results: typing.Optional[typing.List[huggingface_hub.repocard_data.EvalResult]] = None model_name: typing.Optional[str] = None ignore_metadata_errors: bool = False **kwargs )
Parameters
-
language (
Union[str, List[str]]
, optional) — Language of model’s training data or metadata. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like “code”, “multilingual”. Defaults toNone
. -
license (
str
, optional) — License of this model. Example: apache-2.0 or any license from https://huggingface.co/docs/hub/repositories-licenses. Defaults to None. -
library_name (
str
, optional) — Name of library used by this model. Example: keras or any library from https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Libraries.ts. Defaults to None. -
tags (
List[str]
, optional) — List of tags to add to your model that can be used when filtering on the Hugging Face Hub. Defaults to None. -
datasets (
List[str]
, optional) — List of datasets that were used to train this model. Should be a dataset ID found on https://hf.co/datasets. Defaults to None. -
metrics (
List[str]
, optional) — List of metrics used to evaluate this model. Should be a metric name that can be found at https://hf.co/metrics. Example: ‘accuracy’. Defaults to None. -
eval_results (
Union[List[EvalResult], EvalResult]
, optional) — List ofhuggingface_hub.EvalResult
that define evaluation results of the model. If provided,model_name
is used to as a name on PapersWithCode’s leaderboards. Defaults toNone
. -
model_name (
str
, optional) — A name for this model. It is used along witheval_results
to construct themodel-index
within the card’s metadata. The name you supply here is what will be used on PapersWithCode’s leaderboards. If None is provided then the repo name is used as a default. Defaults to None. -
ignore_metadata_errors (
str
) — If True, errors while parsing the metadata section will be ignored. Some information might be lost during the process. Use it at your own risk. -
kwargs (
dict
, optional) — Additional metadata that will be added to the model card. Defaults to None.
Model Card Metadata that is used by Model Database Hub when included at the top of your README.md
Example:
>>> from huggingface_hub import ModelCardData
>>> card_data = ModelCardData(
... language="en",
... license="mit",
... library_name="timm",
... tags=['image-classification', 'resnet'],
... )
>>> card_data.to_dict()
{'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}
Dataset Cards
Dataset cards are also known as Data Cards in the ML Community.
DatasetCard
from_template
< source >( card_data: DatasetCardData template_path: typing.Optional[str] = None **template_kwargs ) → huggingface_hub.DatasetCard
Parameters
-
card_data (
huggingface_hub.DatasetCardData
) — A huggingface_hub.DatasetCardData instance containing the metadata you want to include in the YAML header of the dataset card on the Model Database Hub. -
template_path (
str
, optional) — A path to a markdown file with optional Jinja template variables that can be filled in withtemplate_kwargs
. Defaults to the default template.
Returns
A DatasetCard instance with the specified card data and content from the template.
Initialize a DatasetCard from a template. By default, it uses the default template, which can be found here: https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md
Templates are Jinja2 templates that can be customized by passing keyword arguments.
Example:
>>> from huggingface_hub import DatasetCard, DatasetCardData
>>> # Using the Default Template
>>> card_data = DatasetCardData(
... language='en',
... license='mit',
... annotations_creators='crowdsourced',
... task_categories=['text-classification'],
... task_ids=['sentiment-classification', 'text-scoring'],
... multilinguality='monolingual',
... pretty_name='My Text Classification Dataset',
... )
>>> card = DatasetCard.from_template(
... card_data,
... pretty_name=card_data.pretty_name,
... )
>>> # Using a Custom Template
>>> card_data = DatasetCardData(
... language='en',
... license='mit',
... )
>>> card = DatasetCard.from_template(
... card_data=card_data,
... template_path='./src/huggingface_hub/templates/datasetcard_template.md',
... custom_template_var='custom value', # will be replaced in template if it exists
... )
DatasetCardData
class huggingface_hub.DatasetCardData
< source >( language: typing.Union[typing.List[str], str, NoneType] = None license: typing.Union[typing.List[str], str, NoneType] = None annotations_creators: typing.Union[typing.List[str], str, NoneType] = None language_creators: typing.Union[typing.List[str], str, NoneType] = None multilinguality: typing.Union[typing.List[str], str, NoneType] = None size_categories: typing.Union[typing.List[str], str, NoneType] = None source_datasets: typing.Optional[typing.List[str]] = None task_categories: typing.Union[typing.List[str], str, NoneType] = None task_ids: typing.Union[typing.List[str], str, NoneType] = None paperswithcode_id: typing.Optional[str] = None pretty_name: typing.Optional[str] = None train_eval_index: typing.Optional[typing.Dict] = None config_names: typing.Union[typing.List[str], str, NoneType] = None ignore_metadata_errors: bool = False **kwargs )
Parameters
-
language (
List[str]
, optional) — Language of dataset’s data or metadata. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like “code”, “multilingual”. -
license (
Union[str, List[str]]
, optional) — License(s) of this dataset. Example: apache-2.0 or any license from https://huggingface.co/docs/hub/repositories-licenses. -
annotations_creators (
Union[str, List[str]]
, optional) — How the annotations for the dataset were created. Options are: ‘found’, ‘crowdsourced’, ‘expert-generated’, ‘machine-generated’, ‘no-annotation’, ‘other’. -
language_creators (
Union[str, List[str]]
, optional) — How the text-based data in the dataset was created. Options are: ‘found’, ‘crowdsourced’, ‘expert-generated’, ‘machine-generated’, ‘other’ -
multilinguality (
Union[str, List[str]]
, optional) — Whether the dataset is multilingual. Options are: ‘monolingual’, ‘multilingual’, ‘translation’, ‘other’. -
size_categories (
Union[str, List[str]]
, optional) — The number of examples in the dataset. Options are: ‘n<1K’, ‘1K1T’, and ‘other’. -
source_datasets (
List[str]]
, optional) — Indicates whether the dataset is an original dataset or extended from another existing dataset. Options are: ‘original’ and ‘extended’. -
task_categories (
Union[str, List[str]]
, optional) — What categories of task does the dataset support? -
task_ids (
Union[str, List[str]]
, optional) — What specific tasks does the dataset support? -
paperswithcode_id (
str
, optional) — ID of the dataset on PapersWithCode. -
pretty_name (
str
, optional) — A more human-readable name for the dataset. (ex. “Cats vs. Dogs”) -
train_eval_index (
Dict
, optional) — A dictionary that describes the necessary spec for doing evaluation on the Hub. If not provided, it will be gathered from the ‘train-eval-index’ key of the kwargs. -
config_names (
Union[str, List[str]]
, optional) — A list of the available dataset configs for the dataset.
Dataset Card Metadata that is used by Model Database Hub when included at the top of your README.md
Space Cards
SpaceCard
SpaceCardData
class huggingface_hub.SpaceCardData
< source >( title: typing.Optional[str] = None sdk: typing.Optional[str] = None sdk_version: typing.Optional[str] = None python_version: typing.Optional[str] = None app_file: typing.Optional[str] = None app_port: typing.Optional[int] = None license: typing.Optional[str] = None duplicated_from: typing.Optional[str] = None models: typing.Optional[typing.List[str]] = None datasets: typing.Optional[typing.List[str]] = None tags: typing.Optional[typing.List[str]] = None ignore_metadata_errors: bool = False **kwargs )
Parameters
-
title (
str
, optional) — Title of the Space. -
sdk (
str
, optional) — SDK of the Space (one ofgradio
,streamlit
,docker
, orstatic
). -
sdk_version (
str
, optional) — Version of the used SDK (if Gradio/Streamlit sdk). -
python_version (
str
, optional) — Python version used in the Space (if Gradio/Streamlit sdk). -
app_file (
str
, optional) — Path to your main application file (which contains either gradio or streamlit Python code, or static html code). Path is relative to the root of the repository. -
app_port (
str
, optional) — Port on which your application is running. Used only if sdk isdocker
. -
license (
str
, optional) — License of this model. Example: apache-2.0 or any license from https://huggingface.co/docs/hub/repositories-licenses. -
duplicated_from (
str
, optional) — ID of the original Space if this is a duplicated Space. -
models (List
str
, optional) — List of models related to this Space. Should be a dataset ID found on https://hf.co/models. -
datasets (
List[str]
, optional) — List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets. -
tags (
List[str]
, optional) — List of tags to add to your Space that can be used when filtering on the Hub. -
ignore_metadata_errors (
str
) — If True, errors while parsing the metadata section will be ignored. Some information might be lost during the process. Use it at your own risk. -
kwargs (
dict
, optional) — Additional metadata that will be added to the space card.
Space Card Metadata that is used by Model Database Hub when included at the top of your README.md
To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference.
Example:
>>> from huggingface_hub import SpaceCardData
>>> card_data = SpaceCardData(
... title="Dreambooth Training",
... license="mit",
... sdk="gradio",
... duplicated_from="multimodalart/dreambooth-training"
... )
>>> card_data.to_dict()
{'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'}
Utilities
EvalResult
class huggingface_hub.EvalResult
< source >( task_type: str dataset_type: str dataset_name: str metric_type: str metric_value: typing.Any task_name: typing.Optional[str] = None dataset_config: typing.Optional[str] = None dataset_split: typing.Optional[str] = None dataset_revision: typing.Optional[str] = None dataset_args: typing.Union[typing.Dict[str, typing.Any], NoneType] = None metric_name: typing.Optional[str] = None metric_config: typing.Optional[str] = None metric_args: typing.Union[typing.Dict[str, typing.Any], NoneType] = None verified: typing.Optional[bool] = None verify_token: typing.Optional[str] = None )
Parameters
-
task_type (
str
) — The task identifier. Example: “image-classification”. -
dataset_type (
str
) — The dataset identifier. Example: “common_voice”. Use dataset id from https://hf.co/datasets. -
dataset_name (
str
) — A pretty name for the dataset. Example: “Common Voice (French)“. -
metric_type (
str
) — The metric identifier. Example: “wer”. Use metric id from https://hf.co/metrics. -
metric_value (
Any
) — The metric value. Example: 0.9 or “20.0 ± 1.2”. -
task_name (
str
, optional) — A pretty name for the task. Example: “Speech Recognition”. -
dataset_config (
str
, optional) — The name of the dataset configuration used inload_dataset()
. Example: fr inload_dataset("common_voice", "fr")
. See thedatasets
docs for more info: https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name -
dataset_split (
str
, optional) — The split used inload_dataset()
. Example: “test”. -
dataset_revision (
str
, optional) — The revision (AKA Git Sha) of the dataset used inload_dataset()
. Example: 5503434ddd753f426f4b38109466949a1217c2bb -
dataset_args (
Dict[str, Any]
, optional) — The arguments passed duringMetric.compute()
. Example forbleu
:{"max_order": 4}
-
metric_name (
str
, optional) — A pretty name for the metric. Example: “Test WER”. -
metric_config (
str
, optional) — The name of the metric configuration used inload_metric()
. Example: bleurt-large-512 inload_metric("bleurt", "bleurt-large-512")
. See thedatasets
docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations -
metric_args (
Dict[str, Any]
, optional) — The arguments passed duringMetric.compute()
. Example forbleu
: max_order: 4 -
verified (
bool
, optional) — Indicates whether the metrics originate from Model Database’s evaluation service or not. Automatically computed by Model Database, do not set. -
verify_token (
str
, optional) — A JSON Web Token that is used to verify whether the metrics originate from Model Database’s evaluation service or not.
Flattened representation of individual evaluation results found in model-index of Model Cards.
For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1.
Return True if self
and other
describe exactly the same metric but with a
different value.
model_index_to_eval_results
huggingface_hub.repocard_data.model_index_to_eval_results
< source >(
model_index: typing.List[typing.Dict[str, typing.Any]]
)
→
model_name (str
)
Parameters
-
model_index (
List[Dict[str, Any]]
) — A model index data structure, likely coming from a README.md file on the Model Database Hub.
Returns
model_name (str
)
The name of the model as found in the model index. This is used as the
identifier for the model on leaderboards like PapersWithCode.
eval_results (List[EvalResult]
):
A list of huggingface_hub.EvalResult
objects containing the metrics
reported in the provided model_index.
Takes in a model index and returns the model name and a list of huggingface_hub.EvalResult
objects.
A detailed spec of the model index can be found here: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
Example:
>>> from huggingface_hub.repocard_data import model_index_to_eval_results
>>> # Define a minimal model index
>>> model_index = [
... {
... "name": "my-cool-model",
... "results": [
... {
... "task": {
... "type": "image-classification"
... },
... "dataset": {
... "type": "beans",
... "name": "Beans"
... },
... "metrics": [
... {
... "type": "accuracy",
... "value": 0.9
... }
... ]
... }
... ]
... }
... ]
>>> model_name, eval_results = model_index_to_eval_results(model_index)
>>> model_name
'my-cool-model'
>>> eval_results[0].task_type
'image-classification'
>>> eval_results[0].metric_type
'accuracy'
eval_results_to_model_index
huggingface_hub.repocard_data.eval_results_to_model_index
< source >(
model_name: str
eval_results: typing.List[huggingface_hub.repocard_data.EvalResult]
)
→
model_index (List[Dict[str, Any]]
)
Parameters
-
model_name (
str
) — Name of the model (ex. “my-cool-model”). This is used as the identifier for the model on leaderboards like PapersWithCode. -
eval_results (
List[EvalResult]
) — List ofhuggingface_hub.EvalResult
objects containing the metrics to be reported in the model-index.
Returns
model_index (List[Dict[str, Any]]
)
The eval_results converted to a model-index.
Takes in given model name and list of huggingface_hub.EvalResult
and returns a
valid model-index that will be compatible with the format expected by the
Model Database Hub.
Example:
>>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult
>>> # Define minimal eval_results
>>> eval_results = [
... EvalResult(
... task_type="image-classification", # Required
... dataset_type="beans", # Required
... dataset_name="Beans", # Required
... metric_type="accuracy", # Required
... metric_value=0.9, # Required
... )
... ]
>>> eval_results_to_model_index("my-cool-model", eval_results)
[{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}]
metadata_eval_result
huggingface_hub.metadata_eval_result
< source >(
model_pretty_name: str
task_pretty_name: str
task_id: str
metrics_pretty_name: str
metrics_id: str
metrics_value: typing.Any
dataset_pretty_name: str
dataset_id: str
metrics_config: typing.Optional[str] = None
metrics_verified: bool = False
dataset_config: typing.Optional[str] = None
dataset_split: typing.Optional[str] = None
dataset_revision: typing.Optional[str] = None
metrics_verification_token: typing.Optional[str] = None
)
→
dict
Parameters
-
model_pretty_name (
str
) — The name of the model in natural language. -
task_pretty_name (
str
) — The name of a task in natural language. -
task_id (
str
) — Example: automatic-speech-recognition. A task id. -
metrics_pretty_name (
str
) — A name for the metric in natural language. Example: Test WER. -
metrics_id (
str
) — Example: wer. A metric id from https://hf.co/metrics. -
metrics_value (
Any
) — The value from the metric. Example: 20.0 or “20.0 ± 1.2”. -
dataset_pretty_name (
str
) — The name of the dataset in natural language. -
dataset_id (
str
) — Example: common_voice. A dataset id from https://hf.co/datasets. -
metrics_config (
str
, optional) — The name of the metric configuration used inload_metric()
. Example: bleurt-large-512 inload_metric("bleurt", "bleurt-large-512")
. -
metrics_verified (
bool
, optional, defaults toFalse
) — Indicates whether the metrics originate from Model Database’s evaluation service or not. Automatically computed by Model Database, do not set. -
dataset_config (
str
, optional) — Example: fr. The name of the dataset configuration used inload_dataset()
. -
dataset_split (
str
, optional) — Example: test. The name of the dataset split used inload_dataset()
. -
dataset_revision (
str
, optional) — Example: 5503434ddd753f426f4b38109466949a1217c2bb. The name of the dataset dataset revision used inload_dataset()
. -
metrics_verification_token (
bool
, optional) — A JSON Web Token that is used to verify whether the metrics originate from Model Database’s evaluation service or not.
Returns
dict
a metadata dict with the result from a model evaluated on a dataset.
Creates a metadata dict with the result from a model evaluated on a dataset.
Example:
>>> from huggingface_hub import metadata_eval_result
>>> results = metadata_eval_result(
... model_pretty_name="RoBERTa fine-tuned on ReactionGIF",
... task_pretty_name="Text Classification",
... task_id="text-classification",
... metrics_pretty_name="Accuracy",
... metrics_id="accuracy",
... metrics_value=0.2662102282047272,
... dataset_pretty_name="ReactionJPEG",
... dataset_id="julien-c/reactionjpeg",
... dataset_config="default",
... dataset_split="test",
... )
>>> results == {
... 'model-index': [
... {
... 'name': 'RoBERTa fine-tuned on ReactionGIF',
... 'results': [
... {
... 'task': {
... 'type': 'text-classification',
... 'name': 'Text Classification'
... },
... 'dataset': {
... 'name': 'ReactionJPEG',
... 'type': 'julien-c/reactionjpeg',
... 'config': 'default',
... 'split': 'test'
... },
... 'metrics': [
... {
... 'type': 'accuracy',
... 'value': 0.2662102282047272,
... 'name': 'Accuracy',
... 'verified': False
... }
... ]
... }
... ]
... }
... ]
... }
True
metadata_update
huggingface_hub.metadata_update
< source >(
repo_id: str
metadata: typing.Dict
repo_type: typing.Optional[str] = None
overwrite: bool = False
token: typing.Optional[str] = None
commit_message: typing.Optional[str] = None
commit_description: typing.Optional[str] = None
revision: typing.Optional[str] = None
create_pr: bool = False
parent_commit: typing.Optional[str] = None
)
→
str
Parameters
-
repo_id (
str
) — The name of the repository. -
metadata (
dict
) — A dictionary containing the metadata to be updated. -
repo_type (
str
, optional) — Set to"dataset"
or"space"
if updating to a dataset or space,None
or"model"
if updating to a model. Default isNone
. -
overwrite (
bool
, optional, defaults toFalse
) — If set toTrue
an existing field can be overwritten, otherwise attempting to overwrite an existing field will cause an error. -
token (
str
, optional) — The Model Database authentication token. -
commit_message (
str
, optional) — The summary / title / first line of the generated commit. Defaults tof"Update metadata with huggingface_hub"
-
commit_description (
str
optional) — The description of the generated commit -
revision (
str
, optional) — The git revision to commit from. Defaults to the head of the"main"
branch. -
create_pr (
boolean
, optional) — Whether or not to create a Pull Request fromrevision
with that commit. Defaults toFalse
. -
parent_commit (
str
, optional) — The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. If specified andcreate_pr
isFalse
, the commit will fail ifrevision
does not point toparent_commit
. If specified andcreate_pr
isTrue
, the pull request will be created fromparent_commit
. Specifyingparent_commit
ensures the repo has not changed before committing the changes, and can be especially useful if the repo is updated / committed to concurrently.
Returns
str
URL of the commit which updated the card metadata.
Updates the metadata in the README.md of a repository on the Model Database Hub.
If the README.md file doesn’t exist yet, a new one is created with metadata and an
the default ModelCard or DatasetCard template. For space
repo, an error is thrown
as a Space cannot exist without a README.md
file.
Example:
>>> from huggingface_hub import metadata_update
>>> metadata = {'model-index': [{'name': 'RoBERTa fine-tuned on ReactionGIF',
... 'results': [{'dataset': {'name': 'ReactionGIF',
... 'type': 'julien-c/reactiongif'},
... 'metrics': [{'name': 'Recall',
... 'type': 'recall',
... 'value': 0.7762102282047272}],
... 'task': {'name': 'Text Classification',
... 'type': 'text-classification'}}]}]}
>>> url = metadata_update("hf-internal-testing/reactiongif-roberta-card", metadata)