stella model
stella是一个通用的中文文本编码模型,目前有两个版本:base 和 large,2个版本的模型均支持1024的输入长度。
完整的训练思路和训练过程已记录在博客,欢迎阅读讨论。
训练数据:
- 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),着重挑选了长度大于512的文本
- 在通用语料库上使用LLM构造一批(question, paragraph)和(sentence, paragraph)数据
训练方法:
- 对比学习损失函数
- 带有难负例的对比学习损失函数(分别基于bm25和vector构造了难负例)
- EWC(Elastic Weights Consolidation)[4]
- cosent loss[5]
- 每一种类型的数据一个迭代器,分别计算loss进行更新
初始权重:
stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的position embedding使用层次分解位置编码[7]进行初始化。
感谢商汤科技研究院开源的piccolo系列模型。
stella is a general-purpose Chinese text encoding model, currently with two versions: base and large, both of them support input lengths of 1024.
The training data mainly includes:
- Open-source training data (wudao_base_200GB, m3e, and simclue), with a focus on selecting texts with lengths greater than 512.
- A batch of (question, paragraph) and (sentence, paragraph) data constructed on a general corpus using LLM.
The loss functions mainly include:
- Contrastive learning loss function
- Contrastive learning loss function with hard negative examples (based on bm25 and vector hard negatives)
- EWC (Elastic Weights Consolidation)
- cosent loss
Model weight initialization:
stella-base-zh and stella-large-zh use piccolo-base-zh and piccolo-large-zh as the base models, respectively, and the
512-1024 position embedding uses the initialization strategy of hierarchical decomposed position encoding.
Training strategy:
One iterator for each type of data, separately calculating the loss.
Metric
C-MTEB leaderboard
stella模型在C-MTEB[8]的结果,评测脚本请参见博客。
Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
---|---|---|---|---|---|---|---|---|---|---|
stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 |
stella-base-zh | 0.2 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 |
piccolo-large-zh | 0.65 | 1024 | 512 | 64.11 | 67.03 | 47.04 | 78.38 | 65.98 | 70.93 | 58.02 |
bge-large-zh | 1.3 | 1024 | 512 | 63.96 | 68.32 | 48.39 | 78.94 | 65.11 | 71.52 | 54.98 |
piccolo-base-zh | 0.2 | 768 | 512 | 63.66 | 66.98 | 47.12 | 76.61 | 66.68 | 71.2 | 55.9 |
bge-large-zh-no-instruct | 1.3 | 1024 | 512 | 63.4 | 68.58 | 50.01 | 76.77 | 64.9 | 70.54 | 53 |
[bge-base-zh | 0.41 | 768 | 512 | 62.8 | 67.07 | 47.64 | 77.5 | 64.91 | 69.53 | 54.12 |
Evaluation for long text
经过实际观察发现,C-MTEB的评测数据长度基本都是小于512的, 更致命的是那些长度大于512的文本,其重点都在前半部分 这里以CMRC2018的数据为例说明这个问题:
question: 《无双大蛇z》是谁旗下ω-force开发的动作游戏?
passage:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推......
passage长度为800多,大于512,但是对于这个question而言只需要前面40个字就足以检索,多的内容对于模型而言是一种噪声,反而降低了效果。
简言之,现有数据集的2个问题:
1)长度大于512的过少
2)即便大于512,对于检索而言也只需要前512的文本内容
导致无法准确评估模型的长文本编码能力。
为了解决这个问题,搜集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,他们分别是:
- CMRC2018,通用百科
- CAIL,法律阅读理解
- DRCD,繁体百科,已转简体
- Military,军工问答
- Squad,英文阅读理解,已转中文
- Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9]
处理规则是选取答案在512长度之后的文本,短的测试数据会欠采样一下,长短文本占比约为1:2,所以模型既得理解短文本也得理解长文本。 除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing
评测指标为Recall@5, 结果如下:
Dataset | piccolo-base-zh | piccolo-large-zh | bge-base-zh | bge-large-zh | stella-base-zh | stella-large-zh |
---|---|---|---|---|---|---|
CMRC2018 | 94.34 | 93.82 | 91.56 | 93.12 | 96.08 | 95.56 |
CAIL | 28.04 | 33.64 | 31.22 | 33.94 | 34.62 | 37.18 |
DRCD | 78.25 | 77.9 | 78.34 | 80.26 | 86.14 | 84.58 |
Military | 76.61 | 73.06 | 75.65 | 75.81 | 83.71 | 80.48 |
Squad | 91.21 | 86.61 | 87.87 | 90.38 | 93.31 | 91.21 |
Multifieldqa_zh | 81.41 | 83.92 | 83.92 | 83.42 | 79.9 | 80.4 |
Average | 74.98 | 74.83 | 74.76 | 76.15 | 78.96 | 78.24 |
注意: 因为长文本评测数据数量稀少,所以构造时也使用了train部分,如果自行评测,请注意模型的训练数据以免数据泄露。
Usage
本模型是在piccolo基础上训练的,因此用法和piccolo完全一致。
注意:在stella中instruction里的冒号是英文冒号, 即查询:
和结果:
。
在sentence-transformer库中的使用方法:
# 对于短对短数据集,下面是通用的使用方式
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('infgrad/stella-base-zh')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# 如果是短对长数据集,推荐添加instruction,来帮助模型更好地进行检索。
# 注意instruction里的是英文的冒号
直接使用transformers库:
from transformers import AutoModel, AutoTokenizer
from sklearn.preprocessing import normalize
model = AutoModel.from_pretrained('infgrad/stella-base-zh')
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh')
sentences = ["数据1", "数据ABCDEFGH"]
batch_data = tokenizer(
batch_text_or_text_pairs=sentences,
padding="longest",
return_tensors="pt",
max_length=1024,
truncation=True,
)
attention_mask = batch_data["attention_mask"]
model_output = model(**batch_data)
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
vectors = normalize(vectors, norm="l2", axis=1, )
print(vectors.shape) # 2,768
Training Detail
硬件: 单卡A100-80GB
环境: torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing
学习率: 1e-6
batch_size: base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例
数据量: 约100万,其中用LLM构造的数据约有200K. LLM模型大小为13b
ToDoList
评测的稳定性:
评测过程中发现Clustering任务会和官方的结果不一致,大约有±0.0x的小差距,基本上可以忽略不计,不影响评测结论。
但是不完全一样还是比较难理解的,本人试了bge和piccolo系列的模型都存在这个问题,个人猜测可能和使用的库、batch_size等环境有关。
更高质量的长文本训练和测试数据: 训练数据多是用13b模型构造的,肯定会存在噪声。 测试数据基本都是从mrc数据整理来的,所以问题都是factoid类型,不符合真实分布。
OOD的性能: 虽然近期出现了很多向量编码模型,但是对于不是那么通用的domain,这一众模型包括stella、openai和cohere, 它们的效果均比不上BM25。
Reference
- https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab
- https://github.com/wangyuxinwhy/uniem
- https://github.com/CLUEbenchmark/SimCLUE
- https://arxiv.org/abs/1612.00796
- https://kexue.fm/archives/8847
- https://huggingface.co/sensenova/piccolo-base-zh
- https://kexue.fm/archives/7947
- https://github.com/FlagOpen/FlagEmbedding
- https://github.com/THUDM/LongBench
- Downloads last month
- 172
Evaluation results
- cos_sim_pearson on MTEB AFQMCvalidation set self-reported51.613
- cos_sim_spearman on MTEB AFQMCvalidation set self-reported54.488
- euclidean_pearson on MTEB AFQMCvalidation set self-reported52.684
- euclidean_spearman on MTEB AFQMCvalidation set self-reported54.488
- manhattan_pearson on MTEB AFQMCvalidation set self-reported52.635
- manhattan_spearman on MTEB AFQMCvalidation set self-reported54.447
- cos_sim_pearson on MTEB ATECtest set self-reported53.392
- cos_sim_spearman on MTEB ATECtest set self-reported54.450
- euclidean_pearson on MTEB ATECtest set self-reported56.873
- euclidean_spearman on MTEB ATECtest set self-reported54.450
- manhattan_pearson on MTEB ATECtest set self-reported56.843
- manhattan_spearman on MTEB ATECtest set self-reported54.434
- accuracy on MTEB AmazonReviewsClassification (zh)test set self-reported40.574
- f1 on MTEB AmazonReviewsClassification (zh)test set self-reported38.878
- cos_sim_pearson on MTEB BQtest set self-reported60.810
- cos_sim_spearman on MTEB BQtest set self-reported62.377
- euclidean_pearson on MTEB BQtest set self-reported61.290
- euclidean_spearman on MTEB BQtest set self-reported62.377
- manhattan_pearson on MTEB BQtest set self-reported61.230
- manhattan_spearman on MTEB BQtest set self-reported62.313
- v_measure on MTEB CLSClusteringP2Ptest set self-reported40.271
- v_measure on MTEB CLSClusteringS2Stest set self-reported37.503
- map on MTEB CMedQAv1test set self-reported84.693
- mrr on MTEB CMedQAv1test set self-reported87.090
- map on MTEB CMedQAv2test set self-reported85.227
- mrr on MTEB CMedQAv2test set self-reported87.722
- map_at_1 on MTEB CmedqaRetrievalself-reported23.540
- map_at_10 on MTEB CmedqaRetrievalself-reported35.591
- map_at_100 on MTEB CmedqaRetrievalself-reported37.549
- map_at_1000 on MTEB CmedqaRetrievalself-reported37.663
- map_at_3 on MTEB CmedqaRetrievalself-reported31.405
- map_at_5 on MTEB CmedqaRetrievalself-reported33.792
- mrr_at_1 on MTEB CmedqaRetrievalself-reported36.359
- mrr_at_10 on MTEB CmedqaRetrievalself-reported44.624
- mrr_at_100 on MTEB CmedqaRetrievalself-reported45.660
- mrr_at_1000 on MTEB CmedqaRetrievalself-reported45.707
- mrr_at_3 on MTEB CmedqaRetrievalself-reported42.002
- mrr_at_5 on MTEB CmedqaRetrievalself-reported43.535
- ndcg_at_1 on MTEB CmedqaRetrievalself-reported36.359
- ndcg_at_10 on MTEB CmedqaRetrievalself-reported42.280
- ndcg_at_100 on MTEB CmedqaRetrievalself-reported49.997
- ndcg_at_1000 on MTEB CmedqaRetrievalself-reported51.966
- ndcg_at_3 on MTEB CmedqaRetrievalself-reported36.851
- ndcg_at_5 on MTEB CmedqaRetrievalself-reported39.249
- precision_at_1 on MTEB CmedqaRetrievalself-reported36.359
- precision_at_10 on MTEB CmedqaRetrievalself-reported9.542
- precision_at_100 on MTEB CmedqaRetrievalself-reported1.582
- precision_at_1000 on MTEB CmedqaRetrievalself-reported0.183
- precision_at_3 on MTEB CmedqaRetrievalself-reported20.914
- precision_at_5 on MTEB CmedqaRetrievalself-reported15.404
- recall_at_1 on MTEB CmedqaRetrievalself-reported23.540
- recall_at_10 on MTEB CmedqaRetrievalself-reported53.005
- recall_at_100 on MTEB CmedqaRetrievalself-reported85.085
- recall_at_1000 on MTEB CmedqaRetrievalself-reported98.210
- recall_at_3 on MTEB CmedqaRetrievalself-reported36.944
- recall_at_5 on MTEB CmedqaRetrievalself-reported44.137
- cos_sim_accuracy on MTEB Cmnlivalidation set self-reported76.164
- cos_sim_ap on MTEB Cmnlivalidation set self-reported85.142
- cos_sim_f1 on MTEB Cmnlivalidation set self-reported77.868
- cos_sim_precision on MTEB Cmnlivalidation set self-reported72.185
- cos_sim_recall on MTEB Cmnlivalidation set self-reported84.522
- dot_accuracy on MTEB Cmnlivalidation set self-reported76.164
- dot_ap on MTEB Cmnlivalidation set self-reported85.163
- dot_f1 on MTEB Cmnlivalidation set self-reported77.868
- dot_precision on MTEB Cmnlivalidation set self-reported72.185
- dot_recall on MTEB Cmnlivalidation set self-reported84.522
- euclidean_accuracy on MTEB Cmnlivalidation set self-reported76.164
- euclidean_ap on MTEB Cmnlivalidation set self-reported85.142
- euclidean_f1 on MTEB Cmnlivalidation set self-reported77.868
- euclidean_precision on MTEB Cmnlivalidation set self-reported72.185
- euclidean_recall on MTEB Cmnlivalidation set self-reported84.522
- manhattan_accuracy on MTEB Cmnlivalidation set self-reported75.995
- manhattan_ap on MTEB Cmnlivalidation set self-reported85.108
- manhattan_f1 on MTEB Cmnlivalidation set self-reported77.808
- manhattan_precision on MTEB Cmnlivalidation set self-reported70.496
- manhattan_recall on MTEB Cmnlivalidation set self-reported86.813
- max_accuracy on MTEB Cmnlivalidation set self-reported76.164
- max_ap on MTEB Cmnlivalidation set self-reported85.163
- max_f1 on MTEB Cmnlivalidation set self-reported77.868