Edit model card

music-genre-detector-finetuned-gtzan_dset

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3892
  • Accuracy: 0.8972
  • Precision: 0.8989
  • Recall: 0.8972
  • F1: 0.8974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.2319 0.98 49 1.5808 0.5263 0.5682 0.5263 0.4767
1.2682 1.98 99 0.9750 0.7556 0.7524 0.7556 0.7510
0.9462 2.99 149 0.7403 0.7945 0.7964 0.7945 0.7921
0.5946 3.99 199 0.5921 0.8233 0.8281 0.8233 0.8214
0.4095 4.99 249 0.4772 0.8634 0.8663 0.8634 0.8638
0.3349 5.99 299 0.4167 0.8835 0.8866 0.8835 0.8841
0.2427 6.88 343 0.3892 0.8972 0.8989 0.8972 0.8974

Framework versions

  • Transformers 4.33.1
  • Pytorch 1.10.2+cu111
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Hosted inference API
or
This model can be loaded on the Inference API on-demand.

Evaluation results